skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Sourav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 16, 2026
  2. Efficient, sustainable, safe, and portable energy storage technologies are required to reduce global dependence on fossil fuels. Lithium-ion batteries satisfy the need for reliability, high energy density, and power density in electrical transportation. Despite these advantages, lithium plating, i.e., the accumulation of metallic lithium on the graphite anode surface during rapid charging or at low temperatures, is an insidious failure mechanism that limits battery performance. Lithium plating significantly shortens the battery’s life and rapidly reduces capacity, limiting the widespread adoption of electrical vehicles. When lithium plating is extreme, it can develop lithium dendrites, which may pass through the separator and lead to an internal short circuit and the subsequent thermal runaway damage of the cell. Over the last two decades, a large number of published studies have focused on understanding the mechanisms underlying lithium plating and on approaches to mitigate its harmful effects. Nevertheless, the physics underlying lithium plating still needs to be clarified. There is a lack of real-time techniques to accurately detect and quantify lithium plating. Real-time detection is essential for alleviating lithium plating-induced failure modes. Several strategies have been explored to minimize plating and its effect on battery life and safety, such as electrolyte design, anode structure design, and hybridized charging protocol design. We summarize the current developments and the different reported hypotheses regarding plating mechanisms, the influence of environmental and electrochemical conditions on plating, recent developments in electrochemical detection methods and their potential for real-time detection, and plating mitigation techniques. The advantages and concerns associated with different electrochemical detection and mitigation techniques are also highlighted. Lastly, we discuss outstanding technical issues and possible future research directions to encourage the development of novel ideas and methods to prevent lithium plating. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available December 1, 2025
  4. Free, publicly-accessible full text available December 2, 2025
  5. Threshold cryptosystems (TCs), developed to eliminate single points of failure in applications such as key management-as-a-service, signature schemes, encrypted data storage and even blockchain applications, rely on the assumption that an adversary does not corrupt more than a fixed number of nodes in a network. This assumption, once broken, can lead to the entire system being compromised. In this paper, we present a systems-level solution, viz., a reboot-based framework, Groundhog, that adds a layer of resiliency on top of threshold cryptosystems (as well as others); our framework ensures the system can be protected against malicious (mobile) adversaries that can corrupt up all but one device in the network. Groundhog ensures that a sufficient number of honest devices is always available to ensure the availability of the entire system. Our framework is general- izable to multiple threshold cryptosystems — we demonstrate this by integrating it with two well-known TC protocols — the Distributed Symmetric key Encryption system (DiSE) and the Boneh, Lynn and Shacham Distributed Signatures (BLS) system. In fact, Groundhog may have applicability in sys- tems beyond those based on threshold cryptography — we demonstrate this on a simpler cryptographic protocol that we developed named PassAround. We developed a (generalizable) container-based framework that can be used to combine Groundhog (and its guarantees) with cryptographic protocols and evaluated our system using, (a) case studies of real world attacks as well as (b) extensive measurements by implementing the aforementioned DiSE, BLS and PassAround protocols on Groundhog. We show that Groundhog is able to guarantee high availability with minimal overheads (less than 7%) . In some instances, Groundhog actually improves the performance of the TC schemes! 
    more » « less
    Free, publicly-accessible full text available November 1, 2025